کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9498553 | 1631204 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Additive preservers of rank on alternate matrix spaces over fields and applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Suppose F is any field and n is an integer with n ⩾ 4. Let Kn(F) be the set of all n Ã n alternate matrices over F, and let (Kn(F), +, ·) be the non-associative ring formed by Kn(F) under the usual addition '+' and the multiplication '·' defined by X · Y = XYX for all X, Y â Kn(F). A pair of n Ã n matrices (A, B) is said to be rank-additive if rank(A + B) = rank A + rank B, and rank-subtractive if rank(A â B) = rank A â rank B. We say that an operator Ï :Kn(F) â Kn(F) is additive if Ï(X + Y) = Ï(X) + Ï(Y) for any X, Y â Kn(F), a preserver of rank-additivity (respectively, rank-subtractivity) on Kn(F) if it preserves the set of all rank-additive (respectively, rank-subtractive) pairs, a preserver of rank on Kn(F) if rank Ï(X) = rank X for every X â Kn(F), and a ring endomorphism of (Kn(F), +, ·) if it is additive and satisfies Ï(X ·Y) = Ï(X) · Ï(Y) for any X, Y â Kn(F). We determine the general form of all additive preservers of rank (respectively, rank-additivity and rank-subtractivity) on Kn(F) and characterize all ring endomorphisms of (Kn(F), +, ·).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 397, 1 March 2005, Pages 325-343
Journal: Linear Algebra and its Applications - Volume 397, 1 March 2005, Pages 325-343
نویسندگان
Xian Zhang,