کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9498553 1631204 2005 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Additive preservers of rank on alternate matrix spaces over fields and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Additive preservers of rank on alternate matrix spaces over fields and applications
چکیده انگلیسی
Suppose F is any field and n is an integer with n ⩾ 4. Let Kn(F) be the set of all n × n alternate matrices over F, and let (Kn(F), +, ·) be the non-associative ring formed by Kn(F) under the usual addition '+' and the multiplication '·' defined by X · Y = XYX for all X, Y ∈ Kn(F). A pair of n × n matrices (A, B) is said to be rank-additive if rank(A + B) = rank A + rank B, and rank-subtractive if rank(A − B) = rank A − rank B. We say that an operator ϕ :Kn(F) → Kn(F) is additive if ϕ(X + Y) = ϕ(X) + ϕ(Y) for any X, Y ∈ Kn(F), a preserver of rank-additivity (respectively, rank-subtractivity) on Kn(F) if it preserves the set of all rank-additive (respectively, rank-subtractive) pairs, a preserver of rank on Kn(F) if rank ϕ(X) = rank X for every X ∈ Kn(F), and a ring endomorphism of (Kn(F), +, ·) if it is additive and satisfies ϕ(X ·Y) = ϕ(X) · ϕ(Y) for any X, Y ∈ Kn(F). We determine the general form of all additive preservers of rank (respectively, rank-additivity and rank-subtractivity) on Kn(F) and characterize all ring endomorphisms of (Kn(F), +, ·).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 397, 1 March 2005, Pages 325-343
نویسندگان
,