کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9498555 1631204 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear preservers between matrix modules over connected commutative rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Linear preservers between matrix modules over connected commutative rings
چکیده انگلیسی
Let R be a connected commutative ring with identity 1 (R contains no idempotents except 0 and 1), and let Mn(R) be the R-module of all n × n matrices over R. R is said to be idempotence-diagonalizable if every idempotent matrix over R is similar to a diagonal matrix. For two arbitrary positive integers n and m, we characterize (a) linear maps from Mn(R) to Mm(R) preserving tripotence when R is any idempotence-diagonalizable ring with the units 2 and 3, and (b) linear maps from Mn(R) to Mm(R) preserving inverses (respectively, Drazin inverses, group inverses, {1}-inverses, {2}-inverses and {1, 2}-inverses) when R is either any idempotence-diagonalizable ring with the units 2 and 3, or any commutative principal ideal domain with at least one unit except for 1 and 2. These characterizations are completed by using an idempotence-preserving result obtained by Cao [Linear maps preserving idempotence on matrix modules over some rings, J. Natur. Sci. Heilongjiang Univ. 16 (1) (1999) 1-4]. Moreover, we also give a simple proof of Cao's result.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 397, 1 March 2005, Pages 355-366
نویسندگان
, ,