کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9498555 | 1631204 | 2005 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Linear preservers between matrix modules over connected commutative rings
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let R be a connected commutative ring with identity 1 (R contains no idempotents except 0 and 1), and let Mn(R) be the R-module of all n Ã n matrices over R. R is said to be idempotence-diagonalizable if every idempotent matrix over R is similar to a diagonal matrix. For two arbitrary positive integers n and m, we characterize (a) linear maps from Mn(R) to Mm(R) preserving tripotence when R is any idempotence-diagonalizable ring with the units 2 and 3, and (b) linear maps from Mn(R) to Mm(R) preserving inverses (respectively, Drazin inverses, group inverses, {1}-inverses, {2}-inverses and {1, 2}-inverses) when R is either any idempotence-diagonalizable ring with the units 2 and 3, or any commutative principal ideal domain with at least one unit except for 1 and 2. These characterizations are completed by using an idempotence-preserving result obtained by Cao [Linear maps preserving idempotence on matrix modules over some rings, J. Natur. Sci. Heilongjiang Univ. 16 (1) (1999) 1-4]. Moreover, we also give a simple proof of Cao's result.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 397, 1 March 2005, Pages 355-366
Journal: Linear Algebra and its Applications - Volume 397, 1 March 2005, Pages 355-366
نویسندگان
Chong-Guang Cao, Xian Zhang,