کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9498610 1631206 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lengths of finite dimensional representations of PBW algebras
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Lengths of finite dimensional representations of PBW algebras
چکیده انگلیسی
Let Σ be a set of n × n matrices with entries from a field, for n > 1, and let c(Σ) be the maximum length of products in Σ necessary to linearly span the algebra it generates. Bounds for c(Σ) have been given by Paz and Pappacena, and Paz conjectures a bound of 2n − 2 for any set of matrices. In this paper we present a proof of Paz's conjecture for sets of matrices obeying a modified Poincaré-Birkhoff-Witt (PBW) property, applicable to finite dimensional representations of Lie algebras and quantum groups. A representation of the quantum plane establishes the sharpness of this bound, and we prove a bound of 2n − 3 for sets of matrices with this modified PBW property which do not generate the full algebra of all n × n matrices. This bound of 2n − 3 also holds for representations of Lie algebras, although we do not know whether it is sharp in this case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 395, 15 January 2005, Pages 175-181
نویسندگان
, ,