کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9498644 | 1631207 | 2005 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unitary similarity classes within the cospectral-congruence class of a matrix
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Matrix BâMn(C) is C-S equivalent (resp. C-E equivalent) to AâMn(C) if B is both congruent and similar to (resp. cospectral with) A. We are concerned with the number (typically one or infinitely many) of unitary similarity classes in the C-S (resp. C-E) equivalence class of a given matrix. The case n = 2 and the general normal case are fully understood for C-S equivalence. Also, the singular case may generally be reduced to the nonsingular case. The present work includes four main results. (1) If 0 lies in the interior of the field of values of a nonsingular A â Mn, n ⩾ 3, then the C-E equivalence class contains infinitely many unitary similarity classes. (2) When 0 is not in the interior, general sufficient conditions are given for the C-E class (and thus the C-S class) to contain only one unitary class. (3) When n = 3, these conditions are also necessary and a classification of all C-E and C-S classes is given. (4) For n ⩾ 3, it is shown that the matrices for which the C-S class contains infinitely many unitary similarity classes are dense among all matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 394, 1 January 2005, Pages 291-307
Journal: Linear Algebra and its Applications - Volume 394, 1 January 2005, Pages 291-307
نویسندگان
Susana Furtado, Charles R. Johnson,