کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9501702 | 1338778 | 2005 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence in competition models with small diffusion coefficients
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that for reaction-diffusion 2-species Lotka-Volterra competition models with spatially independent reaction terms, global stability of an equilibrium for the reaction system implies global stability for the reaction-diffusion system. This is not in general true for spatially inhomogeneous models. We show here that for an important range of such models, for small enough diffusion coefficients, global convergence to an equilibrium holds for the reaction-diffusion system, if for each point in space the reaction system has a globally attracting hyperbolic equilibrium. This work is planned as an initial step towards understanding the connection between the asymptotics of reaction-diffusion systems with small diffusion coefficients and that of the corresponding reaction systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 211, Issue 1, 1 April 2005, Pages 135-161
Journal: Journal of Differential Equations - Volume 211, Issue 1, 1 April 2005, Pages 135-161
نویسندگان
V. Hutson, Y. Lou, K. Mischaikow,