کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9501901 | 1338798 | 2005 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global stability of periodic orbits of non-autonomous difference equations and population biology
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Elaydi and Yakubu showed that a globally asymptotically stable(GAS) periodic orbit in an autonomous difference equation must in fact be a fixed point whenever the phase space is connected. In this paper we extend this result to periodic nonautonomous difference equations via the concept of skew-product dynamical systems. We show that for a k-periodic difference equation, if a periodic orbit of period r is GAS, then r must be a divisor of k. In particular sub-harmonic, or long periodic, oscillations cannot occur. Moreover, if r divides k we construct a non-autonomous dynamical system having minimum period k and which has a GAS periodic orbit with minimum period r. Our methods are then applied to prove a conjecture by J. Cushing and S. Henson concerning a non-autonomous Beverton-Holt equation which arises in the study of the response of a population to a periodically fluctuating environmental force such as seasonal fluctuations in carrying capacity or demographic parameters like birth or death rates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 208, Issue 1, 1 January 2005, Pages 258-273
Journal: Journal of Differential Equations - Volume 208, Issue 1, 1 January 2005, Pages 258-273
نویسندگان
Saber Elaydi, Robert J. Sacker,