کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9505807 | 1340343 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Is complexity a source of incompleteness?
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we prove Chaitin's “heuristic principle,” the theorems of a finitely-specified theory cannot be significantly more complex than the theory itself, for an appropriate measure of complexity. We show that the measure is invariant under the change of the Gödel numbering. For this measure, the theorems of a finitely-specified, sound, consistent theory strong enough to formalize arithmetic which is arithmetically sound (like Zermelo-Fraenkel set theory with choice or Peano Arithmetic) have bounded complexity, hence every sentence of the theory which is significantly more complex than the theory is unprovable. Previous results showing that incompleteness is not accidental, but ubiquitous are here reinforced in probabilistic terms: the probability that a true sentence of length n is provable in the theory tends to zero when n tends to infinity, while the probability that a sentence of length n is true is strictly positive.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 35, Issue 1, July 2005, Pages 1-15
Journal: Advances in Applied Mathematics - Volume 35, Issue 1, July 2005, Pages 1-15
نویسندگان
Cristian S. Calude, Helmut Jürgensen,