کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9506335 | 1631840 | 2005 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid genetic algorithm-neural network strategy for simulation optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Simulation optimization aims at determining the best values of input parameters, while the analytical objective function and constraints are not explicitly known in terms of design variables and their values only can be estimated by complicated analysis or time-consuming simulation. In this paper, a hybrid genetic algorithm-neural network strategy (GA-NN) is proposed for such kind of optimization problems. The good approximation performance of neural network (NN) and the effective and robust evolutionary searching ability of genetic algorithm (GA) are applied in hybrid sense, where NNs are employed in predicting the objective value, and GA is adopted in searching optimal designs based on the predicted fitness values. Numerical simulation results and comparisons based on a well-known pressure vessel design problem demonstrate the feasibility and effectiveness of the framework, and much better results are achieved than some existed literature results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 170, Issue 2, 15 November 2005, Pages 1329-1343
Journal: Applied Mathematics and Computation - Volume 170, Issue 2, 15 November 2005, Pages 1329-1343
نویسندگان
Ling Wang,