کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9506617 | 1340754 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fitting distribution-like data to exponential sums with genetic algorithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Conventional derivative-based algorithms of fitting distribution-like data to exponential-sum functions can be easily trapped in some local minima. This paper is concerned with the development of algorithms of fitting distribution-like data to exponential sums with genetic algorithms. Both binary coding scheme and real-valued coding scheme have been investigated in this research. Experimental results have shown that real-valued coding scheme is more appropriate to the problem of fitting distribution-like data to exponential sums. Testing with real engineering data, it has been demonstrated that the fitting algorithm derived in this paper is quite promising. The fitted exponential-sum models using genetic algorithm can very well describe the measured data. However, for the data with wavy trends, pure exponential-sum functions may not be the best candidate models. More generalized exponential-sum models need to be studied.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 169, Issue 1, 1 October 2005, Pages 82-95
Journal: Applied Mathematics and Computation - Volume 169, Issue 1, 1 October 2005, Pages 82-95
نویسندگان
N.-Y. Ma, R.P. King,