کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9506869 | 1340761 | 2005 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient parallel algorithm for quasi pentadiagonal systems on a hypercube
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present an efficient algorithm for the parallel solution of pentadiagonal linear systems written in the matrix form as Ax = d, where A is a N Ã N quasi pentadiagonal matrix having non-zero elements at the top right and bottom left corners. The algorithm is implemented on a p-processor hypercube in three phases. In phase one, a generalization of the algorithm due to J.S. Kowalik [High Speed Computation, Springer Verlag, NY, 1984] is developed which decomposes the above matrix system into smaller quasi block tridiagonal (p + 1) Ã (p + 1) subsystem, which is then solved in phase two using odd even reduction method generalized for block tridiagonal systems with non-zero blocks at the top right and bottom left corners. The values of all the variables are then evaluated in phase three by backward substitution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 163, Issue 3, 25 April 2005, Pages 1215-1223
Journal: Applied Mathematics and Computation - Volume 163, Issue 3, 25 April 2005, Pages 1215-1223
نویسندگان
C.P. Katti, Rama Kumari,