کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9507165 | 1340771 | 2005 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Model identification of ARIMA family using genetic algorithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
ARIMA is a popular method to analyze stationary univariate time series data. There are usually three main stages to build an ARIMA model, including model identification, model estimation and model checking, of which model identification is the most crucial stage in building ARIMA models. However there is no method suitable for both ARIMA and SARIMA that can overcome the problem of local optima. In this paper, we provide a genetic algorithms (GA) based model identification to overcome the problem of local optima, which is suitable for any ARIMA model. Three examples of times series data sets are used for testing the effectiveness of GA, together with a real case of DRAM price forecasting to illustrate an application in the semiconductor industry. The results show that the GA-based model identification method can present better solutions, and is suitable for any ARIMA models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 164, Issue 3, 25 May 2005, Pages 885-912
Journal: Applied Mathematics and Computation - Volume 164, Issue 3, 25 May 2005, Pages 885-912
نویسندگان
Chorng-Shyong Ong, Jih-Jeng Huang, Gwo-Hshiung Tzeng,