کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9511591 | 1632219 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Linearly implicit Runge-Kutta methods and approximate matrix factorization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Linearly implicit Runge-Kutta methods are a class of suitable time integrators for initial value problems of ordinary differential systems whose right-hand side function can be written as the sum of a stiff linear part and a nonlinear term. Such systems arise for instance after spatial discretization of taxis-diffusion-reaction systems from mathematical biology. When approximate matrix factorization is used for efficiently solving the stage equations appearing in these methods, then the order of the methods is reduced to one. In this paper we analyse this fact and propose an appropriate and efficient correction to achieve order two while preserving the main stability properties of the underlying method. Numerical experiments with LIRK3 [Appl. Numer. Math. 37 (2001) 535] illustrating the theory are provided. In the case of taxis-diffusion-reaction systems, the corrected method compares well with other suitable schemes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 53, Issues 2â4, May 2005, Pages 183-200
Journal: Applied Numerical Mathematics - Volume 53, Issues 2â4, May 2005, Pages 183-200
نویسندگان
M.P. Calvo, A. Gerisch,