کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
958600 929041 2010 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling and forecasting stock return volatility using a random level shift model
موضوعات مرتبط
علوم انسانی و اجتماعی اقتصاد، اقتصادسنجی و امور مالی اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله
Modeling and forecasting stock return volatility using a random level shift model
چکیده انگلیسی

We consider the estimation of a random level shift model for which the series of interest is the sum of a short-memory process and a jump or level shift component. For the latter component, we specify the commonly used simple mixture model such that the component is the cumulative sum of a process which is 0 with some probability (1 − α) and is a random variable with probability α. Our estimation method transforms such a model into a linear state space with mixture of normal innovations, so that an extension of Kalman filter algorithm can be applied. We apply this random level shift model to the logarithm of daily absolute returns for the S&P 500, AMEX, Dow Jones and NASDAQ stock market return indices. Our point estimates imply few level shifts for all series. But once these are taken into account, there is little evidence of serial correlation in the remaining noise and, hence, no evidence of long-memory. Once the estimated shifts are introduced to a standard GARCH model applied to the returns series, any evidence of GARCH effects disappears. We also produce rolling out-of-sample forecasts of squared returns. In most cases, our simple random level shift model clearly outperforms a standard GARCH(1,1) model and, in many cases, it also provides better forecasts than a fractionally integrated GARCH model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Empirical Finance - Volume 17, Issue 1, January 2010, Pages 138–156
نویسندگان
, ,