کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9610268 47178 2005 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Study of direct and indirect naphtha recycling to a resid FCC unit for maximum propylene production
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Study of direct and indirect naphtha recycling to a resid FCC unit for maximum propylene production
چکیده انگلیسی
To satisfy the increasing propylene demand, direct and indirect naphtha recycling schemes around an existing resid fluid catalytic cracking (FCC) unit were investigated. To this aim, light cracked naphtha (LCN), heavy cracked naphtha (HCN) and a PolyNaphtha (PN) oligomerisation product were cracked under a wide range of operating conditions over a commercial Y zeolite based equilibrium catalyst. Experimental data were acquired in three different units: a fixed bed bench scale unit, a fixed fluidised bed unit and an adiabatic circulating fluidised bed pilot plant. It was shown that FCC naphthas require high operating severities to crack, and that even then their conversion remains relatively moderate. Hence, direct recycling to the main riser does not seem a viable pathway to increase propylene product. Feeding FCC naphthas to a second reaction zone operating at high severity allows to increase the propylene yield in a significant manner. Increasing conversion, however, not only leads to higher LPG and propylene yields, but also results in very high dry gas yields. An alternative scheme was proposed, in which the olefinic C4 and C5 fractions are converted into a naphtha fraction through oligomerisation in a dedicated unit before being recracked in the secondary riser. As the highly olefinic oligomerised effluent mainly consist of dimerised and trimerised butenes and pentenes, this feed is more easily cracked and high conversions can be achieved. This indirect interconversion of butenes and pentenes into propylene therefore effectively allows to convert these butenes and pentenes into propylene, resulting in a significant increase in propylene yield. Each of the three main naphtha recycle options (directly to the main riser, directly to a secondary riser or indirectly via a light olefin oligomerisation unit) have been analysed and compared to a base case. In the evaluation of each of these schemes, all heat balance effects, both on the riser and the regenerator side, have been accounted for. The proposed process scheme with an indirect recycle via an oligomerisation unit enhances the already inherent flexibility of the FCC unit. The naphtha recycle can be turned on or off, the second reaction zone can be used to crack naphtha or to crack resid feed to maximise throughput, while the effluent of the oligomerisation unit can be recycled to the FCC unit for propylene production or hydrogenated and sent to gasoline and kerosene pool.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 106, Issues 1–4, 15 October 2005, Pages 62-71
نویسندگان
, , , ,