کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9650527 | 1437519 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Combined use of supervised and unsupervised learning for power system dynamic security mapping
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a new methodology which combines supervised and unsupervised learning for evaluating power system dynamic security. Based on the concept of stability margin, pre-fault power system conditions are assigned to the output neurons on the two-dimensional grid with the growing hierarchical self-organizing map technique (GHSOM) via supervised artificial neural networks (ANNs) which perform an estimation of post-fault power system state. The technique estimates the dynamic stability index that corresponds to the most critical value of synchronizing and damping torques of multimachine power systems. ANN-based pattern recognition is carried out with the growing hierarchical self-organizing feature mapping in order to provide adaptive neural network architecture during its unsupervised training process. Numerical tests, carried out on a IEEE 9 bus power system are presented and discussed. The analysis using such method provides accurate results and improves the effectiveness of system security evaluation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 18, Issue 6, September 2005, Pages 673-683
Journal: Engineering Applications of Artificial Intelligence - Volume 18, Issue 6, September 2005, Pages 673-683
نویسندگان
M. Boudour, A. Hellal,