کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9650565 | 1437522 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A neural network-based prediction model for fine pitch stencil-printing quality in surface mount assembly
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The soldering problems in surface mount assembly can represent considerable production cost increases and yield loss. About 60% of the soldering defect problems can be attributed to the solder paste stencil printing process. This paper proposes to solve a solder-paste stencil-printing quality problem by a neural network approach. Employment of a neuro-computing approach allows multiple inputs to the generation of multiple outputs. In this study, the inputs are composed of eight important factors in modeling the nonlinear behavior of the stencil-printing process for predicting deposited paste volumes. A 38-3 fractional factorial experimental design is conducted to efficiently collect structured data used for neural network training and testing. The results show that the proposed neural-network model is effective in solving a practical application.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 18, Issue 3, April 2005, Pages 335-341
Journal: Engineering Applications of Artificial Intelligence - Volume 18, Issue 3, April 2005, Pages 335-341
نویسندگان
Taho Yang, Tsung-Nan Tsai, Junwu Yeh,