| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9651714 | 1438533 | 2005 | 22 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Soft computing optimization methods applied to logistic processes
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												This paper discusses the methodologies that can be used to optimize a logistic process of a supply chain described as a scheduling problem. First, a model of the system based on a real-world example is presented. Then, a new objective function called Global Expected Lateness is proposed, in order to describe multiple optimization criteria. Finally, three different optimization methodologies are proposed: a classical dispatching rule, and two soft computing techniques, Genetic Algorithms (GA) and Ant Colony Optimization (ACO). These methodologies are compared to the dispatching policy in the real-world example. The results show that dispatching heuristics are outperformed by the GA and ACO meta-heuristics. Further, it is shown that GA and ACO provide statistically identical scheduling solutions and from the optimization performance point of view, it is equivalent to use any of the meta-heuristics.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 40, Issue 3, November 2005, Pages 280-301
											Journal: International Journal of Approximate Reasoning - Volume 40, Issue 3, November 2005, Pages 280-301
نویسندگان
												C.A. Silva, J.M.C. Sousa, T. Runkler, R. Palm,