کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653361 679045 2005 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support Vector Regression for the simultaneous learning of a multivariate function and its derivatives
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Support Vector Regression for the simultaneous learning of a multivariate function and its derivatives
چکیده انگلیسی
In this paper, the problem of simultaneously approximating a function and its derivatives is formulated within the Support Vector Machine (SVM) framework. First, the problem is solved for a one-dimensional input space by using the ε-insensitive loss function and introducing additional constraints in the approximation of the derivative. Then, we extend the method to multi-dimensional input spaces by a multidimensional regression algorithm. In both cases, to optimize the regression estimation problem, we have derived an iterative re-weighted least squares (IRWLS) procedure that works fast for moderate-size problems. The proposed method shows that using the information about derivatives significantly improves the reconstruction of the function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 1–3, December 2005, Pages 42-61
نویسندگان
, , , ,