کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653361 | 679045 | 2005 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Support Vector Regression for the simultaneous learning of a multivariate function and its derivatives
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the problem of simultaneously approximating a function and its derivatives is formulated within the Support Vector Machine (SVM) framework. First, the problem is solved for a one-dimensional input space by using the ε-insensitive loss function and introducing additional constraints in the approximation of the derivative. Then, we extend the method to multi-dimensional input spaces by a multidimensional regression algorithm. In both cases, to optimize the regression estimation problem, we have derived an iterative re-weighted least squares (IRWLS) procedure that works fast for moderate-size problems. The proposed method shows that using the information about derivatives significantly improves the reconstruction of the function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 69, Issues 1â3, December 2005, Pages 42-61
Journal: Neurocomputing - Volume 69, Issues 1â3, December 2005, Pages 42-61
نویسندگان
Marcelino Lázaro, Ignacio SantamarÃa, Fernando Pérez-Cruz, Antonio Artés-RodrÃguez,