کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653417 679189 2005 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear dimensionality reduction of data manifolds with essential loops
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Nonlinear dimensionality reduction of data manifolds with essential loops
چکیده انگلیسی
Numerous methods or algorithms have been designed to solve the problem of nonlinear dimensionality reduction (NLDR). However, very few among them are able to embed efficiently 'circular' manifolds like cylinders or tori, which have one or more essential loops. This paper presents a simple and fast procedure that can tear or cut those manifolds, i.e. break their essential loops, in order to make their embedding in a low-dimensional space easier. The key idea is the following: starting from the available data points, the tearing procedure represents the underlying manifold by a graph and then builds a maximum subgraph with no loops anymore. Because it works with a graph, the procedure can preprocess data for all NLDR techniques that uses the same representation. Recent techniques using geodesic distances (Isomap, geodesic Sammon's mapping, geodesic CCA, etc.) or K-ary neighborhoods (LLE, hLLE, Laplacian eigenmaps) fall in that category. After describing the tearing procedure in details, the paper comments a few experimental results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 67, August 2005, Pages 29-53
نویسندگان
, ,