کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653437 679189 2005 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning similarity for semantic images classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Learning similarity for semantic images classification
چکیده انگلیسی
While people compare images using semantic concepts, computers compare images using low-level visual features that sometimes have little to do with these semantics. To reduce the gap between the high-level semantics of visual objects and the low-level features extracted from them, in this paper we develop a framework of learning similarity (LS) using neural networks for semantic image classification, where a LS-based k-nearest neighbors (k-NNL) classifier is employed to assign a label to an unknown image according to the majority of k most similar features. Experimental results on an image database show that the k-NNL classifier outperforms the Euclidean distance-based k-NN (k-NNE) classifier and back-propagation network classifiers (BPNC).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 67, August 2005, Pages 363-368
نویسندگان
, , , ,