کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9653484 679194 2005 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust integration and detection of noisy contours in a probabilistic neural model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Robust integration and detection of noisy contours in a probabilistic neural model
چکیده انگلیسی
Contour integration is an important step in the process of image segmentation and gestalt perception. Experimental evidence with monkeys and humans demonstrates that this specific computation is performed very fast and highly efficient, even if contours are jittered, partially occluded, or reduced in luminance. Here, we investigate the reliability of a probabilistic algorithm for contour detection under various neuronal and environmental constraints, as e.g. synaptic noise or imperfect knowledge about the exact orientation of an edge at some position in the visual field. We show that under most conditions there exists a range of tuning widths for orientation-specific neurons in the visual cortex which yields an optimum in contour detection performance. In particular, we demonstrate an increase of the performance when the information of the orientation of the contour elements becomes more uncertain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volumes 65–66, June 2005, Pages 211-217
نویسندگان
, , ,