کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653583 | 679201 | 2005 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Training support vector machines based on stacked generalization for image classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a two-level stacked generalization scheme composed of three generalizers of support vector machines (SVMs) for image classification. They are color, texture, and high-level concept SVMs. The focus of this paper is to investigate two training strategies based on two-fold cross-validation and non-cross-validation for the proposed classification scheme by evaluating their classification performances, margin of the hyperplane and numbers of support vectors of SVMs. The results show that the non-cross-validation training method performs better, having higher correct classification rates, larger margin of the hyperplane, and smaller numbers of support vectors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 64, March 2005, Pages 497-503
Journal: Neurocomputing - Volume 64, March 2005, Pages 497-503
نویسندگان
Chih-Fong Tsai,