کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9653606 | 679206 | 2005 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian decision theory on three-layer neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We discuss the Bayesian decision theory on neural networks. In the two-category case where the state-conditional probabilities are normal, a three-layer neural network having d hidden layer units can approximate the posterior probability in Lp(Rd,p), where d is the dimension of the space of observables. We extend this result to multicategory cases. Then, the number of the hidden layer units must be increased, but can be bounded by 12d(d+1) irrespective of the number of categories if the neural network has direct connections between the input and output layers. In the case where the state-conditional probability is one of familiar probability distributions such as binomial, multinomial, Poisson, negative binomial distributions and so on, a two-layer neural network can approximate the posterior probability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 63, January 2005, Pages 209-228
Journal: Neurocomputing - Volume 63, January 2005, Pages 209-228
نویسندگان
Yoshifusa Ito, Cidambi Srinivasan,