| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9654540 | 679751 | 2005 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Evolution of recurrent neural controllers using an extended parallel genetic algorithm
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Autonomous intelligent agents often must complete non-Markovian sequential tasks, which require complex recurrent neural controllers. In order to improve the convergence of evolution and reduce the computation time, this paper proposes application of an extended evolutionary algorithm. We implemented an extended multi-population genetic algorithm (EMPGA), where subpopulations apply different evolutionary strategies. In addition, subpopulations compete and cooperate among each other. Results show that EMPGA outperformed single population genetic algorithm (SPGA) by efficiently distributing the number of individuals among subpopulations as different strategies became successful during the course of evolution. In addition, the comparison with other multi-population GA shows that competition between subpopulations improved the quality of solution. The evolved neural controllers were also tested in the real hardware of Cyber Rodent robot.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 52, Issues 2â3, 31 August 2005, Pages 148-159
											Journal: Robotics and Autonomous Systems - Volume 52, Issues 2â3, 31 August 2005, Pages 148-159
نویسندگان
												Genci Capi, Kenji Doya,