کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9655179 | 684860 | 2005 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Supermodular functions and the complexity of MAX CSP
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we study the complexity of the maximum constraint satisfaction problem (MAX CSP) over an arbitrary finite domain. An instance of MAX CSP consists of a set of variables and a collection of constraints which are applied to certain specified subsets of these variables; the goal is to find values for the variables which maximize the number of simultaneously satisfied constraints. Using the theory of sub- and supermodular functions on finite lattice-ordered sets, we obtain the first examples of general families of efficiently solvable cases of MAX CSP for arbitrary finite domains. In addition, we provide the first dichotomy result for a special class of non-Boolean MAX CSP, by considering binary constraints given by supermodular functions on a totally ordered set. Finally, we show that the equality constraint over a non-Boolean domain is non-supermodular, and, when combined with some simple unary constraints, gives rise to cases of MAX CSP which are hard even to approximate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 149, Issues 1â3, 1 August 2005, Pages 53-72
Journal: Discrete Applied Mathematics - Volume 149, Issues 1â3, 1 August 2005, Pages 53-72
نویسندگان
David Cohen, Martin Cooper, Peter Jeavons, Andrei Krokhin,