کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9655203 | 684007 | 2005 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Watersheds, mosaics, and the emergence paradigm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we investigate the links between the flooding paradigm and the topological watershed. Guided by the analysis of a classical flooding algorithm, we present several notions that lead us to a better understanding of the watershed: minima extension, mosaic, pass value and separation. We first make a detailed examination of the effectiveness of the divide set produced by watershed algorithms. We introduce the mosaic to retrieve the altitude of points along the divide set. A desirable property is that, when two minima are separated by a crest in the original image, they are still separated by a crest of the same altitude in the mosaic. Our main result states that this is the case if and only if the mosaic is obtained through a topological thinning. We investigate the possibility for a flooding to produce a topological watershed, and conclude that this is not feasible. This leads us to reverse the flooding paradigm, and to propose a notion of emergence. An emergence process is a transformation based on a topological criterion, in which points are processed in decreasing altitude order while preserving the number of connected components of lower cross-sections. Our main result states that any emergence watershed is a topological watershed, and more remarkably, that any topological watershed of a given image can be obtained as an emergence watershed of the image.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 147, Issues 2â3, 15 April 2005, Pages 301-324
Journal: Discrete Applied Mathematics - Volume 147, Issues 2â3, 15 April 2005, Pages 301-324
نویسندگان
Laurent Najman, Michel Couprie, Gilles Bertrand,