کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9657733 | 690096 | 2005 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A sufficient condition for non-uniqueness in binary tomography with absorption
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A new kind of discrete tomography problem is introduced: the reconstruction of discrete sets from their absorbed projections. A special case of this problem is discussed, namely, the uniqueness of the binary matrices with respect to their absorbed row and column sums when the absorption coefficient is μ=log((1+5)/2). It is proved that if a binary matrix contains a special structure of 0s and 1s, called alternatively corner-connected component, then this binary matrix is non-unique with respect to its absorbed row and column sums. Since it has been proved in another paper [A. Kuba, M. Nivat, Reconstruction of discrete sets with absorption, Linear Algebra Appl. 339 (2001) 171-194] that this condition is also necessary, the existence of alternatively corner-connected component in a binary matrix gives a characterization of the non-uniqueness in this case of absorbed projections.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 346, Issues 2â3, 28 November 2005, Pages 335-357
Journal: Theoretical Computer Science - Volume 346, Issues 2â3, 28 November 2005, Pages 335-357
نویسندگان
Attila Kuba, Murice Nivat,