کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9664088 | 1446256 | 2005 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural network forecasting for seasonal and trend time series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Neural networks have been widely used as a promising method for time series forecasting. However, limited empirical studies on seasonal time series forecasting with neural networks yield mixed results. While some find that neural networks are able to model seasonality directly and prior deseasonalization is not necessary, others conclude just the opposite. In this paper, we investigate the issue of how to effectively model time series with both seasonal and trend patterns. In particular, we study the effectiveness of data preprocessing, including deseasonalization and detrending, on neural network modeling and forecasting performance. Both simulation and real data are examined and results are compared to those obtained from the Box-Jenkins seasonal autoregressive integrated moving average models. We find that neural networks are not able to capture seasonal or trend variations effectively with the unpreprocessed raw data and either detrending or deseasonalization can dramatically reduce forecasting errors. Moreover, a combined detrending and deseasonalization is found to be the most effective data preprocessing approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 160, Issue 2, 16 January 2005, Pages 501-514
Journal: European Journal of Operational Research - Volume 160, Issue 2, 16 January 2005, Pages 501-514
نویسندگان
G.Peter Zhang, Min Qi,