کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9702440 | 1462564 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Research of Genetic Training Algorithm for Identifying Mechanical Failure Modes within the Framework of Case-Based Reasoning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The combination of case-based reasoning (CBR) and genetic algorithm (GA) is considered in the problem of failure mode identification in aeronautical component failure analysis. Several implementation issues such as matching attributes selection, similarity measure calculation, weights learning and training evaluation policies are carefully studied. The testing applications illustrate that an accuracy of 74.67% can be achieved with 75 balanced distributed failure cases covering 3 failure modes, and that the resulting learning weight vector can be well applied to the other 2 failure modes, achieving 73.3% of recognition accuracy. It is also proved that its popularizing capability is good to the recognition of even more mixed failure modes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Aeronautics - Volume 18, Issue 2, May 2005, Pages 122-129
Journal: Chinese Journal of Aeronautics - Volume 18, Issue 2, May 2005, Pages 122-129
نویسندگان
Yuan-ming XU, Yang ZHANG, Li-na CHEN,