کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9711193 | 1467184 | 2005 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hertz contact at finite friction and arbitrary profiles
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Axisymmetric contact at finite Coulomb friction and arbitrary profiles is examined analytically and numerically for dissimilar linear elastic solids. Invariance and generality are aimed at and an incremental procedure is developed resulting in a reduced benchmark problem corresponding to a rigid flat indentation of an elastic half-space. The reduced problem, being independent of loading and contact region, was solved by a finite element method based on a stationary contact contour and characterized by high accuracy. Subsequently, a tailored cumulative superposition procedure was developed to resolve the original problem to determine global and local field values. Save for the influence of the coefficients of friction and contraction ratio, it is shown that at partial slip the evolving relative stick-slip contour is independent of any convex and smooth contact profile at monotonic loading. For flat and conical profiles with rounded edges and apices, results are illustrated for relations between force, depth and contact contours together with surface stress distributions. The solution for dissimilar solids in a full space is transformed to a half-space problem and solved for a combination of material parameters in order to first determine interface traction distributions. Subsequently, full field values for the two solids were computed individually. In order to predict initiation of fracture and plastic flow, results are reported for the location and magnitude of maximum tensile stress and effective stress, respectively, for a range of geometrical and material parameters. In two illustrations, predicted results are compared with experimental findings related to initiation of brittle fracture and load-depth relations at nanoindentation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 53, Issue 6, June 2005, Pages 1422-1447
Journal: Journal of the Mechanics and Physics of Solids - Volume 53, Issue 6, June 2005, Pages 1422-1447
نویسندگان
Bertil Storåkers, Denis Elaguine,