کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9732519 1481479 2005 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination
چکیده انگلیسی
In this paper, we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class. The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-general approach. Reasons for this outcome are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 21, Issue 4, October–December 2005, Pages 755-774
نویسندگان
, , ,