کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9740127 | 1489226 | 2005 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian models for medical image biology using monte carlo markov chains techniques
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The objective of Bayesian modelling in pattern analysis is aimed to extract the important characteristics of the pattern using a few parameters so as to represent the pattern effectively. The use of Bayesian methods in medical biology and modelling is an approach, which seeks to provide a unified framework within many different image processes. Markov random fields (M.r.f.) modelling are a very popular pattern analysis methods and it plays an important role in pattern recognition and computer vision. In this work, Bayesian models would be presented to illustrate biological phenomena using the Gibbs sampler technique. Finally, methods for estimating model parameters using likelihood techniques are examined, and a model selection procedure is proposed for classifying the neighbourhood structure of the image. The techniques are investigated using simulated and real data from the area of biology.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematical and Computer Modelling - Volume 42, Issues 7â8, October 2005, Pages 759-768
Journal: Mathematical and Computer Modelling - Volume 42, Issues 7â8, October 2005, Pages 759-768
نویسندگان
S. Zimeras, F. Gerogiakodis,