کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9741178 | 1489449 | 2005 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local Lagrangian formalism and discretization of the Heisenberg magnet model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we develop the Lagrangian and multisymplectic structures of the Heisenberg magnet (HM) model which are then used as the basis for geometric discretizations of HM. Despite a topological obstruction to the existence of a global Lagrangian density, a local variational formulation allows one to derive local conservation laws using a version of Nöther's theorem from the formal variational calculus of Gelfand-Dikii. Using the local Lagrangian form we extend the method of Marsden, Patrick and Schkoller to derive local multisymplectic discretizations directly from the variational principle. We employ a version of the finite element method to discretize the space of sections of the trivial magnetic spin bundle N=MÃS2 over an appropriate space-time M. Since sections do not form a vector space, the usual FEM bases can be used only locally with coordinate transformations intervening on element boundaries, and conservation properties are guaranteed only within an element. We discuss possible ways of circumventing this problem, including the use of a local version of the method of characteristics, non-polynomial FEM bases and Lie-group discretization methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 69, Issues 3â4, 24 June 2005, Pages 304-321
Journal: Mathematics and Computers in Simulation - Volume 69, Issues 3â4, 24 June 2005, Pages 304-321
نویسندگان
D. Karpeev, C.M. Schober,