کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9952328 | 1447393 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Orbital-enriched flat-top partition of unity method for the Schrödinger eigenproblem
ترجمه فارسی عنوان
پارتیشن بندی تخت دو طرفه از وحدت اوربیتال برای یک مسئله اسرارآمیز
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مکانیک کوانتومی، تقسیم روش وحدت، شرایط مرزی بلوچ، تجمع متغیری، توابع غنی سازی، ثبات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Quantum mechanical calculations require the repeated solution of a Schrödinger equation for the wavefunctions of the system, from which materials properties follow. Recent work has shown the effectiveness of enriched finite element type Galerkin methods at significantly reducing the degrees of freedom required to obtain accurate solutions. However, time to solution has been adversely affected by the need to solve a generalized rather than standard eigenvalue problem and the ill-conditioning of associated system matrices. In this work, we address both issues by proposing a stable and efficient orbital-enriched partition of unity method to solve the Schrödinger boundary-value problem in a parallelepiped unit cell subject to Bloch-periodic boundary conditions. In the proposed partition of unity method, the three-dimensional domain is covered by overlapping patches, with a compactly-supported weight function associated with each patch. A key ingredient in our approach is the use of non-negative weight functions that possess the flat-top property, i.e., each weight function is identically equal to unity over some finite subset of its support. This flat-top property provides a pathway to devise a stable approximation over the whole domain. On each patch, we use pth degree orthogonal (Legendre) polynomials that ensure pth order completeness, and in addition include eigenfunctions of the radial Schrödinger equation. Furthermore, we adopt a variational lumping approach to construct a (block-)diagonal overlap matrix that yields a standard eigenvalue problem for which there exist efficient eigensolvers. The accuracy, stability, and efficiency of the proposed method is demonstrated for the Schrödinger equation with a harmonic potential as well as a localized Gaussian potential. We show that the proposed approach delivers optimal rates of convergence in the energy, and the use of orbital enrichment significantly reduces the number of degrees of freedom for a given desired accuracy in the energy eigenvalues while the stability of the enriched approach is fully maintained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 342, 1 December 2018, Pages 224-239
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 342, 1 December 2018, Pages 224-239
نویسندگان
Clelia Albrecht, Constanze Klaar, John Ernest Pask, Marc Alexander Schweitzer, N. Sukumar, Albert Ziegenhagel,