کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
997535 1481449 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis
چکیده انگلیسی

This paper applies receiver operating characteristic (ROC) analysis to micro-level, monthly time series from the M3-Competition. Forecasts from competing methods were used in binary decision rules to forecast exceptionally large declines in demand. Using the partial area under the ROC curve (PAUC) criterion as a forecast accuracy measure and paired-comparison testing via bootstrapping, we find that complex univariate methods (including Flores-Pearce 2, ForecastPRO, Automat ANN, Theta, and SmartFCS) perform best for this purpose. The Kendall tau test of dependency for PAUC and a judgmental index of forecast method complexity provide further confirming evidence. We also found that decision-rule combination forecasts using three top methods generally perform better than the component methods, although not statistically so. The top methods for forecasting large declines match the top methods for conventional forecast accuracy in the M3-Competition’s micro monthly time series, and therefore, evidence from the M3-Competition suggests that practitioners should use complex univariate forecast methods for operations-level forecasting, for both ordinary and large-change forecasts.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 29, Issue 2, April–June 2013, Pages 274–281
نویسندگان
, ,