کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
997596 | 1481456 | 2011 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Holt’s exponential smoothing and neural network models for forecasting interval-valued time series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم انسانی و اجتماعی
مدیریت، کسب و کار و حسابداری
کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Interval-valued time series are interval-valued data that are collected in a chronological sequence over time. This paper introduces three approaches to forecasting interval-valued time series. The first two approaches are based on multilayer perceptron (MLP) neural networks and Holt’s exponential smoothing methods, respectively. In Holt’s method for interval-valued time series, the smoothing parameters are estimated by using techniques for non-linear optimization problems with bound constraints. The third approach is based on a hybrid methodology that combines the MLP and Holt models. The practicality of the methods is demonstrated through simulation studies and applications using real interval-valued stock market time series.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 27, Issue 3, July–September 2011, Pages 740–759
Journal: International Journal of Forecasting - Volume 27, Issue 3, July–September 2011, Pages 740–759
نویسندگان
André Luis Santiago Maia, Francisco de A.T. de Carvalho,