کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
998599 1481477 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aggregation effect and forecasting temporal aggregates of long memory processes
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Aggregation effect and forecasting temporal aggregates of long memory processes
چکیده انگلیسی

This article studies the parsimonious effect of temporal aggregation on long memory time series with ARFIMA structure, and the efficiency of forecasting temporal aggregates of long memory processes using low order ARFIMA models. It is well known that the aggregates of an ARFIMA(0, d, 0) process (where d is a positive real number) have autocorrelations that follow an ARFIMA (0, d, ∞) structure in general. In this paper, we derive a low order ARFIMA(0, d, d¯1) approximation to the aggregate structure as the level of aggregation tends to infinity (where d¯1 is the greatest integer strictly less than d + 1). Numerical evaluation and simulation experiments show that this approximation is close, getting more precise as the value of d increases. For forecasting future aggregates, the efficiency of using the low order approximation for the aggregate series and the efficiency of using the underlying disaggregate model is compared. A simulation study is performed to illustrate the results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 22, Issue 2, April–June 2006, Pages 267–281
نویسندگان
, ,