کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
999699 1481466 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting histogram time series with k-nearest neighbours methods
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Forecasting histogram time series with k-nearest neighbours methods
چکیده انگلیسی

Histogram time series (HTS) describe situations where a distribution of values is available for each instant of time. These situations usually arise when contemporaneous or temporal aggregation is required. In these cases, histograms provide a summary of the data that is more informative than those provided by other aggregates such as the mean. Some fields where HTS are useful include economy, official statistics and environmental science.This article adapts the k-Nearest Neighbours (k-NN) algorithm to forecast HTS and, more generally, to deal with histogram data. The proposed k-NN relies on the choice of a distance that is used to measure dissimilarities between sequences of histograms and to compute the forecasts. The Mallows distance and the Wasserstein distance are considered. The forecasting ability of the k-NN adaptation is illustrated with meteorological and financial data, and promising results are obtained. Finally, further research issues are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 25, Issue 1, January–March 2009, Pages 192–207
نویسندگان
, ,