کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10121377 1641621 2005 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Early crust on top of the Earth's core
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله
Early crust on top of the Earth's core
چکیده انگلیسی
Mass balance considerations and preliminary results of geochemical modelling of the above scenario (similar to that performed by Tolstikhin and Marty [Tolstikhin, I.N., Marty, B., 1998. The evolution of terrestrial volatiles, A view from helium, neon, argon and nitrogen isotope modeling. Chem. Geol. 147, 27-52]) show the potential geochemical importance of D″. (1) Modelling of Pu-U-I-Xe isotope systematics predicts formation of this reservoir early in Earth history, ∼100 Ma after formation of the Solar system. (2) The total amount of heat-generating U, Th, K (and other highly incompatible elements) in D″ exceeds 20% of the Earth inventory, and a similar portion of terrestrial heat is being transferred from the core + D″ into the base of the overlying convecting mantle. (3) D″ is enriched in solar implanted rare gases because the small (re)-accreting debris with high surface/mass ratios will have been subjected to intense radiation by the early sun. (4) Rare gases diffuse from D″ into the overlying mantle and are then transferred into upwelling plumes, which originate above D″. In addition, small amounts of D″ material may be entrained by the mantle convective flow as was recently discussed by Schott et al. [Schott, B., Yuen, D.A., Braun, A., 2002. The influences of composition and temperature-dependent rheology in thermal-chemical convection on entrainment of the D″ layer. Physics Earth Planet. Inter. 129, 43-65]. From the rare-gas modelling it follows that initially (∼4500 Ma ago) D″ could have been more massive by a factor of ∼1.2 than at present (about 2 × 1026 g). The present-day mass flux from D″ into the convecting mantle is estimated to be ≤0.05 × 1016 g year−1, a factor of ∼100 less than the rate of ridge magmatism. This small contribution of D″ material makes it difficult to trace fingerprints of D″ even using such sensitive tracers as Pb isotope ratios. (5) The density contrast that stabilizes D″ is maintained by its higher intrinsic density due to the iron-rich chondrite-like component. Subduction of this material, its entrainment by convective mantle flow and mixing could also account for the preservation of the chondritic relative abundances of siderophile elements in the mantle. If D″ is partially molten, the density contrast may be caused by a high-density melt fraction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics of the Earth and Planetary Interiors - Volume 148, Issues 2–4, February 2005, Pages 109-130
نویسندگان
, ,