| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 10133058 | 1645586 | 2018 | 9 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Implementation of stochastic multi attribute analysis (SMAA) in comparative environmental assessments
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 نرم افزار
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												The selection of an alternative based on the results of a comparative environmental assessment such as life cycle assessment (LCA), environmental input-output analysis (EIOA) or integrated assessment modelling (IAM) is challenging because most of the times there is no single best option. Most comparative cases contain trade-offs between environmental criteria, uncertainty in the performances and multiple diverse values from decision makers. To circumvent these challenges, a method from decision analysis, namely stochastic multi attribute analysis (SMAA), has been proposed instead. SMAA performs aggregation that is partially compensatory (hence, closer to a strong sustainability perspective), incorporates performance uncertainty in the assessment, is free from external normalization references and allows for uncertainties in decision maker preferences. This paper presents a thorough introduction of SMAA for environmental decision-support, provides the mathematical fundamentals and offers an Excel platform for easy implementation and access.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 109, November 2018, Pages 223-231
											Journal: Environmental Modelling & Software - Volume 109, November 2018, Pages 223-231
نویسندگان
												Valentina Prado, Reinout Heijungs,