کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10136956 1645696 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inorganic scale thickness prediction in oil pipelines by gamma-ray attenuation and artificial neural network
ترجمه فارسی عنوان
پیش بینی ضریب ضریب غیر آلی در خطوط لوله نفت توسط ضریب اشعه گاما و شبکه عصبی مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم تشعشع
چکیده انگلیسی
Scale can be defined as chemical compounds that are inorganic, initially insoluble, and precipitate accumulating on the internal walls of pipes, surface equipment, and/or parts of components involved in the production and transport of oil. These compounds, when precipitating, cause problems in the oil industry and consequently result in losses in the optimization of the extraction process. Despite the importance and impact of the precipitation of these compounds in the technological and economic scope, there remains difficulty in determining the methods that enable the identification and quantification of the scale at an initial stage. The use of gamma transmission technique may provide support for a better understanding of the deposition of these compounds, making it a suitable tool for the noninvasive determination of their deposition in oil transport pipelines. The geometry used for the scale detection includes a 280-mm diameter steel tube containing barium sulphate (BaSO4) scale ranging from 0.5 to 6 cm, a gamma radiation source with divergent beam, and a NaI(Tl) 2 × 2″ scintillation detector. The opening size of the collimated beam was also evaluated (2-7 mm) to quantify the associated error in calculating the scale. The study was done with computer simulation, using the MCNP-X code, and the results were validated using analytical equations. Data obtained by the simulation were used to train an artificial neural network (ANN), thereby making the study system more complex and closer to the real one. The input data provided for the training, testing, and validation of the network consisted of pipes with 4 different internal diameters (D1, D2, D3, and D4) and 14 different scale thicknesses (0.5 to 7 cm, with steps of 0.5 cm). The network presented generalization capacity and good convergence, with 70% of cases with less than 10% relative error and a linear correlation coefficient of 0.994, which indicates the possibility of using this study for this purpose.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Radiation and Isotopes - Volume 141, November 2018, Pages 44-50
نویسندگان
, , , ,