کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10138679 | 1645896 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou's PseAAC
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this study, we propose a novel model called MACC-PSSM by integrating Moran autocorrelation and cross correlation with PSSM. Then a 3600-dimensional feature vector is constructed to predict apoptosis protein subcellular localization. Finally, 210 features are selected using principal component analysis (PCA) on the ZW225 dataset, and support vector machine is adopted as classifier. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets: ZW225 and CL317. Our model achieves competitive performance on prediction accuracies, especially for the overall prediction accuracies for datasets ZW225 and CL317, which reach 84.9% and 90.5%, respectively. Comparison of our results with other methods demonstrates that MACC-PSSM model can be used as a potential candidate for the accurate prediction of apoptosis protein subcellular localization.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 457, 14 November 2018, Pages 163-169
Journal: Journal of Theoretical Biology - Volume 457, 14 November 2018, Pages 163-169
نویسندگان
Shengli Zhang, Yunyun Liang,