کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10139584 | 1645968 | 2018 | 54 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A conservative discretization of the shallow-water equations on triangular grids
ترجمه فارسی عنوان
توجیه محافظه کارانه معادلات آب کم عمق در شبکه های مثلثی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
دینامیک مایع ژئوفیزیک، معادلات آب کم عمق، شبکه های غیر ساختاری، سازگاری حفظ کننده، قوانین حفاظت، شکل ضعیف،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
A structure-preserving discretization of the shallow-water equations on unstructured spherical grids is introduced. The unstructured grids that we consider have triangular cells with a C-type staggering of variables, where scalar variables are located at centres of grid cells and normal components of velocity are placed at cell boundaries. The staggering necessitates reconstructions and these reconstructions are build into the algorithm such that the resulting discrete equations obey a weighted weak form. This approach, combined with a mimetic discretization of the differential operators of the shallow-water equations, provides a conservative discretization that preserves important aspects of the mathematical structure of the continuous equations, most notably the simultaneous conservation of quadratic invariants such as energy and enstrophy. The structure-preserving nature of our discretization is confirmed through theoretical analysis and through numerical experiments on two different triangular grids, a symmetrized icosahedral grid of nearly uniform resolution and a non-uniform triangular grid whose resolution increases towards the poles.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 375, 15 December 2018, Pages 871-900
Journal: Journal of Computational Physics - Volume 375, 15 December 2018, Pages 871-900
نویسندگان
Peter Korn, Leonidas Linardakis,