کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10158074 1666505 2018 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Determination of quantitative trait nucleotides by concordance analysis between quantitative trait loci and marker genotypes of US Holsteins
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
پیش نمایش صفحه اول مقاله
Determination of quantitative trait nucleotides by concordance analysis between quantitative trait loci and marker genotypes of US Holsteins
چکیده انگلیسی
Experimental designs that exploit family information can provide substantial predictive power in quantitative trait nucleotide discovery projects. Concordance between quantitative trait locus genotype as determined by the a posteriori granddaughter design and marker genotype was determined for 30 trait-by-chromosomal segment effects segregating in the US Holstein population with probabilities of <10−20 to accept the null hypotheses of no segregating gene affecting the trait within the chromosomal segment. Genotypes for 83 grandsires and 17,217 sons were determined by either complete sequence or imputation for 3,148,506 polymorphisms across the entire genome; 471 Holstein bulls had a complete genome sequence, including 64 of the grandsires. Complete concordance was obtained only for stature on chromosome 14 and daughter pregnancy rate on chromosome 18. For each quantitative trait locus, effects of the 30 polymorphisms with highest concordance scores for the analyzed trait were computed by stepwise regression for predicted transmitting abilities of 26,750 bulls with progeny test and imputed genotypes. Effects for stature on chromosome 11, daughter pregnancy rate on chromosome 18, and protein percentage on chromosome 20 met 3 criteria: complete or almost complete concordance, nominal significance of the polymorphism effect after correction for all other polymorphisms, and marker coefficient of determination >40% of total multiple-regression coefficient of determination for the 30 polymorphisms with highest concordance. An intronic variant marker on chromosome 5 at 93,945,738 bp explained 7% of variance for fat percentage and 74% of total multiple-marker regression variance but was concordant for only 24 of 30 families. The missense polymorphism Phe279Tyr in GHR at 31,909,478 bp on chromosome 20 was confirmed as the causative mutation for fat and protein concentration. For effect on fat percentage on chromosome 14, 12 additional missense polymorphisms were found that had almost complete concordance with the suggested causative polymorphism (missense mutation Ala232Glu in DGAT1). The only polymorphism found likely to improve predictive power for genomic evaluation of dairy cattle was on chromosome 15; that polymorphism had a frequency of 0.45 for the allele with economically positive effects on all production traits.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Dairy Science - Volume 101, Issue 10, October 2018, Pages 9089-9107
نویسندگان
, , , , , , , ,