کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10227676 451 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers
چکیده انگلیسی
Antimalarial therapy is a major contributor to declining malaria morbidity and mortality. However, the high toxicity and low bioavailability of current antimalarials and emerging drug resistance necessitates drug-delivery research. We have previously developed glyceryl-dilaurate nanolipid carriers (GDL-NLCs) for antimalarial drug delivery. Here, we show evidence that GDL-NLCs themselves selectively target Plasmodium-infected red blood cells (iRBCs), and cause severe parasite impairment. The glyceryl-dilaurate lipid-moiety was important in the targeting. GDL-NLCs localized to the parasite mitochondrion and uptake led to mitochondrial-membrane polarization and Ca2+ ion accumulation, ROS release, and stage-specific iRBC lysis. GDL-NLC treatment also resulted in externalization of iRBC-membrane phosphatidylserine and enhanced iRBC clearance by macrophages. GDL-NLC uptake disrupted the parasite-induced tubulovesicular network, which is vital for nutrient import by the parasite. Laser optical trap studies revealed that GDL-NLCs also restored iRBC flexibility. Such restoration of iRBC flexibility may help mitigate the vasculature clogging that can lead to cerebral malaria. We demonstrate the suitability of GDL-NLCs for intravenous delivery of antimalarial combinations artemether-clindamycin and artemether-lumefantrine in the murine model. Complete parasite clearance was achieved at 5−20% of the therapeutic dose of these combinations. Thus, this nanostructured lipid formulation can solubilize lipophilic drugs, selectively target and impair the parasite-infected red cell, and therefore constitutes a potent delivery vehicle for antimalarials.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 35, Issue 24, August 2014, Pages 6636-6645
نویسندگان
, , , , , , , , ,