کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10229284 518 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of human cord blood- and embryonic stem cell-derived endothelial progenitor cells in the treatment of chronic wounds
ترجمه فارسی عنوان
مقایسه سلولهای بنیادی اندوتلیال سلول های بنیادی خون بند ناف و سلول های جنینی در درمان زخم های مزمن
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
چکیده انگلیسی
Endothelial progenitor cells (EPCs) promote new blood vessel formation and increase angiogenesis by secreting growth factors and cytokines in ischemic tissues. Therefore, EPCs have been highlighted as an alternative cell source for wound healing. EPCs can be isolated from various sources, including the bone marrow, cord blood, and adipose tissue. However, several recent studies have reported that isolating EPCs from these sources has limitations, such as the isolation of insufficient cell numbers and the difficulty of expanding these cells in culture. Thus, human embryonic stem cells (hESCs) have generated great interest as an alternative source of EPCs. Previously, we established an efficient preparation method to obtain EPCs from hESCs (hESC-EPCs). These hESC-EPCs secreted growth factors and cytokines, which are known to be important in angiogenesis and wound healing. In this study, we directly compared the capacity of hESC-EPCs and human cord blood-derived EPCs (hCB-EPCs) to benefit wound healing. The number of hESC-EPCs increased during culture and was always higher than the number of hCB-EPCs during the culture period. In addition, the levels of VEGF and Ang-1 secreted by hESC-EPCs were significantly higher than those produced by hCB-EPCs. After transplantation in a mouse dermal excisional wound model, all EPC-transplanted wounds exhibited better regeneration than in the control group. More importantly, we found that the wounds transplanted with hESC-EPCs showed significantly accelerated re-epithelialization. Thus, hESC-EPCs may be a promising cell source for the treatment of chronic wounds.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 34, Issue 4, January 2013, Pages 995-1003
نویسندگان
, , , , , , , , , ,