کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10229425 532 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography
چکیده انگلیسی
We report the synthesis and characterization of dendrimer-entrapped gold nanoparticles (Au DENPs) modified by polyethylene glycol (PEG) with enhanced biocompatibility for computed tomography (CT) imaging applications. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 (G5.NH2) modified by PEG monomethyl ether (G5.NH2-mPEG20) were used as templates to synthesize Au DENPs, followed by acetylation of the remaining dendrimer terminal amines to generate PEGylated Au DENPs. The partial PEGylation modification of dendrimer terminal amines allows high loading of Au within the dendrimer interior, and consequently by simply varying the Au salt/dendrimer molar ratio, the size of the PEGylated Au DENPs can be controlled at a range of 2-4 nm with a narrow size distribution. The formed PEGylated Au DENPs are water-dispersible, stable in a pH range of 5-8 and a temperature range of 0-50 °C, and non-cytotoxic at a concentration as high as 100 μm. X-ray absorption coefficient measurements show that the attenuation intensity of the PEGylated Au DENPs is much higher than that of Omnipaque with iodine concentration similar to Au. With the sufficiently long half-decay time demonstrated by pharmacokinetics studies, the PEGylated Au DENPs enabled not only X-ray CT blood pool imaging of mice and rats after intravenous injection of the particles, but also effective CT imaging of a xenograft tumor model in nude mice. These findings suggest that the designed PEGylated Au DENPs can be used as a promising contrast agent with enhanced biocompatibility for CT imaging of various biological systems, especially in cancer diagnosis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 33, Issue 4, February 2012, Pages 1107-1119
نویسندگان
, , , , , , , , ,