کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10230271 797 2005 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Effects of incorporation of HA/ZrO2 into glass ionomer cement (GIC)
چکیده انگلیسی
Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO2)-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO2 powders were heat treated at 700°C and 800°C for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO2-GICs. The effects of different volume percentages of HA/ZrO2 powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO2-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO2 particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO2 improved the mechanical properties of the HA/ZrO2-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO2-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO2-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO2-GICs were found to be much better than those of HA-GICs because ZrO2 has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO2 does not dissolve with increasing soaking time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 26, Issue 7, March 2005, Pages 713-720
نویسندگان
, , , ,