کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
10321712 | 660749 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Regularized multivariable grey model for stable grey coefficients estimation
ترجمه فارسی عنوان
مدل خاکستری چند متغیره مرتب برای ارزیابی ضرایب خاکستری پایدار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل خاکستری چند متغیره، مشکل منفی، منظم سازی، شاخص های صنعتی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Recently, the convolution integral-based multivariable grey model (GMC(1, N)) has attracted considerable interest due to its significant performance in time series forecasting. However, this promising technique may occasionally confront ill-posed problem, which is a plague ignored by most researchers. In this paper, a regularized GMC(1, N) framework (R-GMC(1, N)) is proposed to estimate the grey coefficients in case there exists potential ill-posed problem. More specifically, we adopt two state-of-the-art regularization methods, i.e. the Tikhonov regularization (TR) and truncated singular value decomposition (TSVD), together with two regularization parameters detection methods, i.e. L-curve (LC) and generalized cross-validation (GCV), to identify the stable solutions. Numerical simulations on industrial indicators of China demonstrate that our methods yield more accurate forecast results than the existing GMC(1, N).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 4, March 2015, Pages 1806-1815
Journal: Expert Systems with Applications - Volume 42, Issue 4, March 2015, Pages 1806-1815
نویسندگان
Zhi He, Yi Shen, Junbao Li, Yan Wang,