کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10323721 661322 2005 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An asymmetry-similarity-measure-based neural fuzzy inference system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An asymmetry-similarity-measure-based neural fuzzy inference system
چکیده انگلیسی
In this paper, a new asymmetry-similarity-measure-based neural fuzzy inference system (ASM-NFIS) is proposed. A pseudo-Gaussian membership function can provide a neural fuzzy inference system which has a higher flexibility and can approach the optimized result more accurately. An on-line self-constructing learning algorithm is proposed to automatically construct the ASM-NFIS. It consists of structure learning and parameter learning that would create adaptive fuzzy logic rules. The structure learning is based on the similarity measure of asymmetric Gaussian membership functions, and the parameter learning is based on a supervised gradient descent method. Computer simulations were conducted to illustrate the performance and applicability of the proposed model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fuzzy Sets and Systems - Volume 152, Issue 3, 16 June 2005, Pages 535-551
نویسندگان
, ,